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A HYBRID METHOD FOR THE SOLUTION OF SOME MULTI-COMMODITY

SPATIAL EQUILIBRIUM PROBLEMS i

by

s

Jong-Shi Pang

ABSTRACT. In this paper, we first derive a unified formulation of

the multi-commodity transportation and transshipment spatial equilibrium

models as a linear complementarity problem with certain block structure.

We then show that a block successive overrelaxation method is applicable

for solving the resulting complementarity problem. The method consists

of solving a sequence of subproblems of the single-commodity type. These

subproblems are to be solved by a special-purpose principal pivoting

algorithm developed in an earlier paper. Computational experience of

solving some fairly large problems by the proposed hybrid method is

N
presented.
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1. INTRODUCTION
In the past fow years, there have been several published studies
on the numerical solution of various economic spatial equilibrium

models [V, 3, 5, 7, 9]. Bas{cally, such models are concerned with the

determination of the regional production, consumption and inter-regional

flows of several commodities so as to achieve price equilibrium. These
models have important practical applications, see [&, v, 9, 11] and

references therein.

The objective of this paper is to propose a hybrid method for solving

two types of multi-commodity spatial equilibrium models; namely the
transportation and transshipment models. These models can be viewed as
extensions of their linear analogs which are the well-known linear

transportation and transshipment models. The method operates by solving

a sequence of subproblems of the single-commodity type. These subproblems

are to be solved by a special-purpose principal pivoting algorithm
described {n an earlier paper (7].

1t is a rather well-known fact that most spatial equilibrium wodels
can be formulated as complementarity problems, see (8] e.gx. With the
assumption of linear supply and demand functions.l‘ these become linear
complementarity problems. Under further assumptions on the supply and
demand functions, the latter complementarity problems can in principle,
be solved by a number of pivoting methods (most notably, Lemke's almost
complementary pivoting algorithm). However, due to the fact that

typically, these linear complementarity problems are enourmously large,

1/ Such an assumption is made very oftem in practice, see [9, 11].
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it is rather impractical, if not impossible to apply the pivoting methods
in a straightforward manner.

Among the recently proposed methods for solving multi-commodity
spatial equilibrium problems the most promising approach seems to be
the Bender's decomposition proposed in [9, 10]. Nevertheless, despite
the rather encouraging computational results reported in the reference
for solving various practical applications, there is a basic drawback
of the approach, namely, it requires solving quadratic subprograms
(in addition to solving linear ones) which could still be fairly large.

In essence, the hybrid method proposed is a specialization of the
block successive overrelaxation (SOR) iterative method (described in [2])
applied to a linear complementarity problem with certain block structure.
As we shall demonstrate, such a complementarity problem provides a unified
formulation for both the transportation and transshipment spatial

equilibrium models.
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2. THE TWO SPATIAL EQUILIBRIUM MODELS

We first describe the transportation spatial equilibrium model. A

certain number m of commodities are to be shipped from n, supply locations

to n, demand locations. The problem is to determine a set of flow

variables X = (2{"s i)' supply quantities x = (x ), demand quantities

ai

y = (-"'5 1)- optimal market supply prices k‘ - (\;i\ and optimal market

demand prices k; = (kg i\ so that the equilibrium conditions below are

satisfied for each o = 1....,n,, B =1,...,n,, and i = 1,. . m:

(a) Linear regional supply and demand functions

1 m m

= b . B = -d -
Pyt sai+kE‘ 8aik ok Py ¢ 81 k_t_' B ks k

(b) Optimum production and consumption

1 1 1 1
Pai - xai : ai e ? (pai = kai)xai o
Pag & Mgy Yar 20 gy = pgy)ygy = O
(¢) Optimum excess supply and demand
n, n,
x> L X L SRS I AP T e
al = ayi 4 al = Tayi ail Tai
y=1 y=1
n, i n, 2
Yoe S & X sy s 20 ( € X “ Yo, =0
ai vl vai Q] = yo! v8 1 31 81




(d) Optimum spatial allocation

1 2 1 ’
+, - ,\'0 ’ \0 , - o X =
Capt ¥t " Ny1 2 Xapt = Capitror = g)¥yg4" 0.
In condition (a) above, sc.1 s dal' gaik and hB { Kk are given constants
defining the supply and demand functions. In condition (d), ca9 { is the

unit transportation cost from supply & to demand 3 ., More details on
the description of this model can be found in [11].

By using condition (a) to eliminate the variables p;i and pgi , we
may formulate the model as the linear complementarity problem: find

vectors x, y, X, x' and X2 such that

@Q.n u=s + Gx - X 20 x>0
v =d + Hy + 2" >0 y2o0
Y=o + st 0% 50 X >0
1 1
b x - sX 30 A0
2 2
[T -y +DX :0 A™> 0

"
<

1
oTx o vly ayTx = )T 2! = T 22

Here (S) is the multi-commodity transportation constraint matrix, i.e.,

D

i

-




(2.2a) S = ﬁm. -~ 1

n2 Im- - - Im
\
n \ n
2 % 1
\
\
a,
bl bl =
(2.2p) L - & { 9 ]
N \ ot MRS
\ \ \ '
N \ N |
\ A Y \ ['
Im Im Im_,

with 1k denoting the identity matrix of order k; G and H are the block

diagonal matrices

(2.2¢) G = /G

where Ga = (%:1 J) and Hs = (H3 ij) are m by m matrices.

L  WPRTS/E N
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Basically, the transshipment spatial equilibrium model is defined by

a set of equilibrium conditions similar to (a) - (d) above. In this model,

the commodities, instead of being shipped directly from the supply to the

demand locations, may 3o through some intermediate transshipment points.

If n is the total number of regions in the market, then the problem is to

find a set of flow variables X = (xa’ {

that the equilibrium conditions below are satisfied for each a, 8 = 1

and i = 1, ...  )m:
(A) Linear regional supply and demand functions

P = a -L b

¥
ai ~ et T 0 Taik ok

(B) Conservation of flows

n n
y. = & X - T X
al oy Cvad o O Ty

(C) Optimum spatial allocation

>0 . X >0 3

Cqpi¥Pai Pt = agil @

), net flow quantities y = (yai) so

»ees,yn

)X

Here, we have assumed, for the sake of simplicity, that there is

a route joining any two regions. For more details on the description

of this model, see [8].

By using conditions (A) and (B) to eliminate the variables and Pai’

we obtain the linear complementarity problem formulation of the model:

find a vector X such that

(2.3 Y = c+Pra+PTBPX >0 3 X>0 and

Xy =0 .

adi "




2
Here P is the multi-commodity node-arc incidence matrix=/ of a simple,

complete digraph G with n nodes and B is the block diagonal matrix

(2.4) B= /B

where each Ba = (bai j) is m by m, See [7]) for more details on the

derivation of the problem (2.3). J

2/ 1t is obtained by replacing the ones in an ordinary node-arc incidence
~  matrix by identity matrices of order m. (cf. (2.2a) and (2.2b).)

s i el “h_--I.IIl-I‘ih.hﬂﬁ.ﬂh-lHIﬂh‘nni;'....‘-..III-III----d.-‘.-“




3. A _UNIFIED FORMULATION

In the formulation (2.1) and (2.3), the vector X is arranged according

to routes between regions; i.e,, commodities passing through the same route

are ordered consecutively. For our purpose, it would be more convenient

to reformulate the problems with the vector X partitioned according to
commodities. For the transshipment problem (2.3), this can be easily done.

In fact, the resulting reformulation has the form

O o e o
a.n Y =T +P a+prapx:o , X>0 and

1l
-

L]
o
.

Here P is the block diagonal matrix

(3.2) P =P

where each P1 is the (single-commodity) node-arc incidence matrix of a

simple, complete digraph with n nodes and A is the block matrix

’ ) ..- PP
(3.2b) A A‘1 A!m

where Atj is the n by n diagonal matrix whose a-th diagonal entry is bai j

The vectors ¢, Y and X are the corresponding rearrangements of ¢, Y
and X respectively,
It is also easy to reformulate the problem (2.1) in terms of

commodities, However, it i{s our contention that the problem can be cast

in the form (3.1) as well. 1In what follows, we show how this is done under

T NS — .---l..-I‘-h-H-i-.-‘.ﬁH.i.-ﬂH-.nH....iiiill.l.lll.lliﬁ.‘ﬁ-.‘




three assumptions:
(1) Both matrices S and D are nonnegative
(2) Each column of D has at most one nonzero entry
(3) The vector ¢ is strictly positive.

Observe that the matrices S and D are not required to have the
transportation structure (2.2a, b) to satisfy the first two conditions.
Lemma 1, Suppose that the assumptions (1) - (3) are satisiied. Then

2
any complementary solution to (2.1) must satisfy the condition: p~ = 0.

2
Proof. Suppose that (x, y, X, 11, A7) is a complementary solution

a
to (2.1) with by > 0 for some component i. Then by complementarity, it

follows that Xi = 0. Let

J={3: D, #0}

ij

Then for each j €J, we have

Y, wc, 4 (sTx‘)j-D

j j c, + (S™\ )j >0

2
gy ™%

which implies that xj = 0. Hence,

S i .
piat S +j§JDUXJ vy 50

which is a contradiction. Q.E.D.

Referring to the transportation spatial model, Lemma 1 says that if

the transportation costs are strictly positive, then no excess demand is

possible at equilibrium.
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Proposition 2. Under the same assumptions, problem (2.1) is equivalent
to
(3.3) u =38 + Gx i 0 x>0
i

Y = (c+Dd) +p'HDX +sTh 30 x>0

o= x =-8X >0 A0

T

[+
~
[}

v BET

in the sense that a complementary solution to one problem will always

give rise to one such solution of the other.

Proof. Let (x, y, X, h‘, xz) be a complementary solution to (2.1).

Then by Lemma 1, we have y = DX. Hence
Y =c¢ +Sl’k1 = DT(v—d-Hy)

or equivalently,

1

(3.4) Y +D'v = (c+DWd) +DHDX + 5Ty’

We claim that (x, X, X‘) is a complementary solution to (3.3). It suffices

to show

Tupx +sa') =o.

XT(c + D'd + D
According to (3.4), the left-hand term is equal to

XT(Y + DTV) = (Dx)Tv = yTv =0 .

Conversely, suppose that (x, X, A\) is a complementary solution

to (3.3). pefine

Sl o
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1 -
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feasibhle, we have
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4oy ¢ \7 o= e \{\'\' ;\\

:
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) v . v Ty "
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contain exacily one porttive entiv, zav =00 Puriheymore, we wasg
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Remark. The second part of the proof remains valid {f ¢ is merely
nonnegative.
The last proposition establishes a first-stage transformation of

the problem (2.1). To complete the process, we prove

Lemma 3, If the matrix S {s nonnegative, then any complementary solution

to (3.3) must satisfy: uT(SX) - uru = Q.
Proof. In fact, if ug > Q, then X, = 0 by complementarity. Hence
0:ut--(SX)i:0

from which the desired equalities follow readily. Q.E.D.

Proposition 4. Suppose that assumptions (1) - (3) are satisfied. Then

problem (3.3) (and thus (2.1)) i{s equivalent to

0.6 Y@+ +sT + 0w +sTesx+sTouzo , x3o
\ - s + GsX +68 20 , w30

YTX = Xru =0

in the sense specified in Proposition 2. The latter linear complementarity
problem can be written in the form

W= T4 PTa + PTBPz e 0 § z20 sz = (Q
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where

Proof. Suppose that (x, X, \) is a comp lementary solution to (3.3).

We claim that (X, p) is a comp lementary solution to (3.6). In fact,

we have
S +GSX +Gu =8 +Gx = u + 2\ > 0

and

(¢ +0%d +sTsy + T + sTes)x + sGu

T T

-(c+Dd)+DHDX+ST)\+Sru:0

establishing the feasibility. The desired complementarity relationships
follow from Lemma 3.

Conversely, let (X, u) be a comp lementary solution to (3.6). Define
X = 4 + SX and A\ =8 +Gx .

Obviously (x, X, \) sblves (3.3) . Q.E.D,

The last proposition shows that if the transportation costs ave
all positive, then the transportation spatial equilibrium problem (2.1)

can be cast as a linear complementarity problem of the same type as the

. c e p—
i N 354
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one obtained from the transshipment model. In particular, by partitioning
the flow vector (X) and the excess supply vector (u) according to
commodities, we may rewrite the linear complementarity problem (3.06)
in the form (3.1) and (3.2) with each Pi and Aij given by

1
D1 0 Aij 0

(3.7) P, = 3 Aij - )

Aj,

b .
where A' and AT are, respectively, n, by n, and n

iy iy

1 by n, diagonal matrices with

'S
; and where \ 1) is the
D

1
- N )

A Paa "Mary ™ Qag =8y

single-commodity, transportation constraint matrix, i.e., (2.2a) and
2.2b) with m = 1,

It is interesting to note that in both cases, the matrices Ai

J

{ are identical. In fact, each P1 is the node-arc

incidence matrix of the graph (or network) underlying the model. This

are diagonal and the P

is clear in the transshipment case. In the other case, the Pi (cf.
(3.7)) can be considered as the node-arc incidence of a transportation
bipartite graph with a self-loop connecting each supply node. Such a
loop represents the excess supply at that node.

To summarize, we conclude that both the mult{i-commodity
transportation and transshipment spatial models can be formulated as

a linear complementarity problem of the form (note the change of notation)

3.8) Wwer+ Prs + PTkrz > 0 ’ z > 0 é sz = Q

where the matrix P {s block diagonal with the number of blocks equal to
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the number of commodities. We point out that the matrix PTAP has

the block structure

T T T
3.9 PAP = E’1 A”P‘ P‘ Alm Pm
' '
! '
T : T i
PmAlPl.---l’mAuum

Lo
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4. THE HYBRID METHOD

There are two basic reasons motivating the proposal of a hybrid
method for solving the two spatial models described earlier. The first
is the large size of the resulting linear complementarity problem which
is typical in practice. For instance, a transshipment problem with
10-commodities and 50-regions would give rise to a 24,500 by 24,500 matrix
in the complementarity problem. The second reason is due to the recent
development of an efficient special-purpose algorithm for solving the
single-commodity modelsll (see [7]). It is hoped that this algorithm
would provide an effective subroutine for solving the multi-commodity
problems.

To state the hybrid method, we refer to the unified formulation
of the two models, i.e., the linear comp lementarity problem (3.8) and
(3.9). Recall also that the matrix P is block diagonal with diagonal

blocks P1 .

Algorithm

0 0 0
Step 0. Let z (z‘,...,zm) be an arbitrary nonnegative vector and

let o be a scalar with 0 <Sw<2. Putk=20 "

Step 1. For { = 1,..,,m, solve the linear complementarity problem

3/ Although the reference treats only the single-commodity transshipment
model, due to the fact that the transportation model gives rise to
exactly the same type of linear complementarity problem it is not
difficult to extend the algorithm described in the reference to handle
the transportation model. See section 5 for computational results on
this extension.

b ctcsas b Shet = RSSOV
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- Tk T
4.1 wi r, +Pi i + PiAiiPizi ’ z, 20 and wiz, = 0
with&/ s: -8 + T Aiijz§+‘ + T A1 P z ; let z:+§ be a solution
j<i 3¢ 311°
and set

k+1 k k+1, k4 k

z, z, + (z -z )
where wk+1 = max {wwg v, zl:"" >0} .
Step 2. Let

g (wk+1)

3= {09 2

k+
(t+P(s+2A P,z, )), <0}
J b i L= il 41 h|
k+1
If max | (w A ) | < ¢ where ¢ is a given positive tolerance, stop.

1,1 €J
An approximate solution is at hand. Otherwise return to Step 1 with k
replaced by k+1.
In essence, the algorithm is a specialization of the modified block
SOR method for solving a general linear complementarity problem with
block structure (see [2]). Concerning its convergence, we state the

following principal result.

Theorem 5. Suppose that the matrix A is symmetric positive definite.

Suppose also that for i = 1,,..,m, the system

4.2) 0g v, #0 . Piyi =0 . 1yi <0

4/ The vectors r and s are partitioned as r -(r?,...,r:)r and s = (s'f,...,s:)‘r
in accordance with the matrix P.
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is inconsistent. Then the sequence {zk a (z?,...,z:)} of vectors

generated by the algorithm has a limit point. Moreover, any such limit
point solves the linear complementarity problem (3.8).

It should be pointed out that even though the matrix A is positive
definite, the matrix PTAP (and each of its diagonal submatrices
PfAiipi) may not be so. Hence, the theorem is not a direct consequence
of the convergence result established in the reference. Nevertheless,

it can be proved in very much the same way. In what follows, we sketch

the proof,

First of all, the inconsistency of the systems (4.2) and the positive
definiteness of the matrix A imply the feasibility and hence the solvability
of each of the subproblems (4.1). Thus each vector z:+3 is well-defined.

Next, by using the function f(z) = (r + PTs)Tz + &(Pz)TAPz to monitor the

progress of the algorithm, it is not difficult to show that the sequence
k
{f(z )} is monotonically decreasing. From this it follows that the

sequence {zk} must be bounded and therefore has a limit point. Finally,

that any such limit point solves the linear complementarity problem (3.8)

can be proved by using the positive definiteness of the matrix A.

Without the positive definiteness of the matrix PTAP, there is in

general no guarantee that the entire sequence (zk} will in fact converge.

However, the next result shows that the sequence {sz} will.

Proposition 6. Under the assumptions of Theorem 5, the sequence {sz}

converges to Pz* where z* is a limit point of {zk} R

Proof. Observe that any limit point of the sequence {sz} must be of
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the form Pz* where z* is a limit point of the sequence fzk} . The

fact that [sz} has at least one limit point follows from its
boundedness (which is implied by the boundedness of {zk]). Suppose now
that {sz} has another limit point given by Py* where y* is some limit
point of [zk} . By Theorem 5, both y* and z* solve the linear
complementarity problem (3.8). By the positive definiteness of A, it
can be proved easily that Py* = Pz*, Thus, the sequence (sz] has

a unique limit point and therefore converges. Q.E.D.

Specializing Theorem 5 to the two spatial models, we obtain

Theorem 7. Suppose that each of the matrices Ga’ HB and Ba (ef, (2.2¢c)

and (2.4)) is symmetric positive definite, Suppose also that the vector ¢ of
transportation costs is positive (in both models). Then the assumptions
of Theorem 5 are satisfied. In particular, the sequence of vectors
generated by the algorithm will converge, in the sense specified in Theorem 5
and Proposition 6, to a solution of the two models.

The proof of Theorem 7 is easy and thus omitted. Observe that in
the specialization, each subproblem (4.1) is precisely one of the
single-commodity type to which the algorithm described in [7] can be

applied.

EPNSR
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5. COMPUTATIONAL EXPERIENCE

In this section, we report our computational experiencei/ with
the hybrid method for solving some randomly generated spatial
transportation and transshipment models, For completeness, we first
present a brief summary of the computational results (see Tables 1
and 2) with the special-purpose principal pivoting algorithm (described
in [7]) for solving the single-commodity problems. We explain how the
data were generated. For the transportation model (cf. the formulation
(3.6)), the tramsportation costs were randomly generated in the interval
(0,10), the components of the vectors s and d in (-50,0) and (- 10,0)
respectively and the diagonal entries of the matrices G and H in (0,5).
The data for the transshipment model were generated in the same way as

in {7].

The third columm (basic arcs) in Tables 1 and 2 refers to the
number of flow variables that are positive in the final solutiomn.
Notice that this number is bounded above by the total number of regions less
one. The fourth column (excess supplies) in Table 1 refers to the
number of supply regions where the actual supply quantity exceeds the
effective supply shipped. -
As with all relaxation methods, the efficiency of the hybrid
method proposed is critically dependent on the choice of the parameter ® .
In the experimentation, we have tried several values. In Tables 3 and &

below, we report a summary of the results with the use of the particular

5/ All the computations were performed on a DEC-20 computer and in double
precision. The computer codes were writtem in FORTRAN. All the
timings reported are exclusive of input and output.
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(#supplies, ffarcs #basic arcs #fexcess #pivots CPU time (in sec.)
#demands) supplies Total Per pivot

(80,80) 6,400 100 57 794 298.983 0.389
) (80,40) 3,200 55 65 399 77.307 0.194
f (60,120) 7,200 138 38 933 406.102 0.435

(60, 100) 6,000 129 27 707 250.170 0.354

' (40,120) 4,800 148 4 603 180.451 0.299

(20,100) 2,000 96 ! 192 26,388 0.137 1
i Table 1 Single-commodity transportation spatial model

CPU time (in sec.)

#regions farcs #basic arcs #pivots Total per pivot
, 120 14,280 7 377 158.397 0.420
g 105 10,920 62 142 45,527 0.321
1 90 §,010 59 m 76.272 0.249
: 75 4,150 43 175 29.232 0.167
30 870 17 35 .945 0.027

Table 2. Single-commodity transshipment spatial model

gy 1 v

;

:
5
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iving the fastest convergence. The data for the problems solved

were generated in the same way as in the single-commodity case. The
tolerance ¢ for the termination criteria (cf. Step 2 in the algorithm)
was chosen to be 10 .5. As the task of testing for termination in

each iteration is rather time-consuming (because of the large number

of variables in the problem), we chose not to perform such test at every

iteration, but rather at every 5 iterations. The entries in the two

tables below should be self-explanatory.

#supplies #demands  #commodities " #iterations g;;aiime (sec.)
20 20 3 1.4 30 264.871
15 15 9 1.4 39 309.769
15 13 6 1.4 99 371.865
10 10 9 1.4 35 98.998
15 13 3 Vo 15 56.487
10 10 6 1.2 30 62.253

Table 3. Multi-Commodity transportation spatial model

drezions #commodities » s#iterations Total CPU time (sec.)
40 2 1.7 140 592.419
20 10 Vel 125 326.102
20 6 Yi# 120 150.913
13 10 Ved 60 56.449
15 4 V7 45 18.355
10 10 1.75 85 29.799
10 8 - 35 8.886

Table 4. Multi-commodity transshipment spatial model




6. CONCLUSION

In this paper, we have shown how a hybrid iterative method can be
used to solve the multi-commodity transportation and transshipment
spatial equilibrium models. At this stage, we are unable to compare the
numerical performance of the proposed method with other methods that are
applicable. To the best of our knowledge, there is no published numerical
results for solving problems as large as the ones solved in this paper.
(The largest problem solved by the Bender's decomposition approach has
only eight supply and demand reg.ons and four commodities. See [9,101.)
It would be interesting to see how these problems can actually be solved

by other methods, especially the Bender's approach.
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